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Abstract
Amphiphilic molecules with hydrophobic tails and hydrophilic heads form
micelles of various shapes and sizes above a minimum threshold concentration
known as the critical micelle concentration (CMC). The CMC as well as the
size and the shape of the aggregates formed depend on various factors, e.g.,
the length of the amphiphiles, their internal rigidity, and temperature. In this
letter we report the results of a detailed investigation of the dependence of
the CMC on temperature for different lattice models of the amphiphilic self-
assembly. Ensuring that the CMC can be unambiguously associated with a
peak in the heat capacity as a function of the amphiphilic concentration, we
show that for the amphiphiles of different lengths and head-to-tail ratios, the
CMC decreases rapidly as a function of the chain length, consistently with the
experimental results. However, for a given chain length, different lattice models
predict that the CMC is always an increasing function of temperature. We point
out that these lattice models, although widely used, are inadequate to explain
the decrease of the CMC with temperature, seen experimentally for non-ionic
surfactants.

There is an increasing interest in understanding the self-assembly properties of amphiphilic
molecules [1–4] due to their widespread application in fabricating various devices and moieties
at the nanometre length scales. For example, micelle formation through the self-assembly of
short hydrocarbon amphiphilic chains is used to prepare both ordered and disordered porous
structures with pore sizes of the order of 40 Å [5]. Self-assembly of peptide ribbons or sheets
has the potential to be used in drug delivery [6]. More recently, short amphiphilic chains have
been used to create a medium with evenly distributed carbon nanotubes [7]. Pattern formations
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of di-block and tri-block co-polymers are also very well known [8]. Quite naturally, attention
needs to be paid to understanding amphiphilic self-assembly in terms of different models with
varying degree of coarse graining or complexity.

In this letter, we report the results of a detailed investigation of the dependence of CMC
on temperature and chain length carried out in various lattice models that are currently used
to study the self-assembly of amphiphiles. We point out that additional features need to be
incorporated to make these models more realistic. Traditionally, lattice models have been
used to understand the micelle formation and phase separation processes of amphiphilic
systems because their inherent simplicity is very appealing as compared to their off-lattice
counterparts. These lattice models can be broadly divided into two categories. In the first
category, the physical system is mapped onto extended Ising-like models with both bond
and site variables [9]. These Ising-like models ignore the internal structure of the individual
amphiphiles. However, they have successfully predicted both a closed-loop coexistence curve
and the temperature dependence of the CMC observed experimentally for non-ionic surfactants
(which are amphiphiles) [10].

It has been demonstrated from simple analytic arguments that the internal structure of the
amphiphiles, e.g., head-to-tail ratios, the polarity and effective sizes of the amphiphilic head
segments, etc, can dictate the final shapes of the micelles [2]. In a continuum description of
the amphiphilic self-assembly, the geometrical features of amphiphiles are taken into account
by modelling them as successive hydrophilic (head) and hydrophobic (tail) beads (monomers)
connected by bonds and immersed in a solvent. Both the solvent molecules and the individual
monomers of the amphiphiles are most often assumed to interact with a Lennard-Jones (LJ)
potential. The successive monomers in a given chain interact with an anharmonic spring
potential to inhibit disintegration of the chain. A specific choice of the LJ parameters then
serves to model an amphiphile of a particular type.

Unlike the Ising-type lattice models, the second category of lattice models, which we
discuss here, partly take into account these geometrical structures of the amphiphiles and can
be looked at as limiting cases of continuum models. Here an amphiphile made of m head
and n tail segments connected by n +m− 1 bonds (denoted as HmTn) is restricted to moving
on a lattice with suitably defined interactions between the amphiphiles and with the solvent
particles in which they are immersed. The simplest of the lattice models of this type is the
Larson model [11], where the interaction parameters are kept to a bare minimum by the special
choice where the solvent particles are made of either the head or the tail particles as shown in
figure 1(a). As a result, the phase digram associated with the self-assembly can be explored
in terms of a single parameter, namely εht/(kBT ), where εht is a measure of the strength of
the interaction between a head and a tail particle, kB is the Boltzmann constant, and T is the
temperature.

In this work we have used a more general model, where the solvent particles are in
general different from the head and the tail segments. This model, which has a few additional
parameters compared to the Larson model, has been studied extensively by Care and co-
workers [12–15] and more recently by us [16]. Both the models capture many of the features of
amphiphilic self-assembly. For example, Monte Carlo (MC) simulation showed the existence
of lamellar and hexagonal phases and vesicular structures [11–15,17,18] in these models. The
results obtained from these lattice models have also been compared with those from analytic
mean-field theories [16, 19, 20]. It is worth mentioning that in both the Larson model and the
Care model, the lattice is completely occupied either with an amphiphilic moiety or with a
solvent particle.

In this letter we have introduced a new lattice model where the solvent degrees of freedom
are removed in favour of an effective interaction between the amphiphiles. Before we discuss
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Figure 1. (a) The Larson model for H1T6. Each amphiphile is made of one head (•) and six tail (◦)
monomers connected by six bonds; the solvent particles are chosen to be made of head particles.
(b) In the Care model the solvent particles (filled squares) are chosen to be different.

this effective-lattice model, we would like to make a few remarks about the continuum models.
Most of the molecular dynamics (MD) simulation studies on continuum models have been
carried out for a small number (�100) of realistic amphiphilic chains [22–25]. Recently
Maillet, Lachet, and Coveney have [26] reported a fully atomistic study of the structure and
dynamics of micelles of approximately 50 realistic amphiphiles surrounded by 3000 water
molecules, taking into account the relevant long-range interactions and stretching the MD
run up to 3 ns. Because of the small concentration of the amphiphiles (relevant for micelle
formation), monitoring the solvent degrees of freedom exhausts most of the computer time.
This inhibits the study of aggregation properties for a large number of amphiphiles. Naturally,
simpler effective-continuum models have also been studied through MC and MD simulation
where the solvent degrees of freedom have been eliminated at the cost of effective interaction
parameters among amphiphilic segments only. These off-lattice models without the solvent
particles are very enticing for numerical expediency and many of the features are qualitatively
similar [27–30]. The lattice versions of these continuum models without the solvent particles
(we will refer to them as effective-lattice models (ELM)) have not been studied in the context
of amphiphilic self-assembly so far.

The purpose of this letter is twofold. First, we report the self-assembling properties
of the amphiphiles in the ELM proposed here and compare the results with those obtained
from other lattice models which include the solvent particles explicitly. Second, by carrying
out extensive MC simulation for different chain lengths, concentrations, and temperatures on
these lattice models, both with and without the solvent particles, we establish an important
generic result: the CMC in the lattice models in this class always increases with increasing
temperature. We point out that this is an obvious limitation of these lattice models because
experimental investigations on various amphiphiles show [31] that the CMC for non-ionic
surfactants decreases with increasing temperature. We discuss the limitations of these models
and suggest further improvements.

First we show the MC simulation results for the Care model where the amphiphiles are
confined to a three-dimensional (3D) cubic lattice of size L. In this model an amphiphile
HmTn of length (m + n − 1) consists of m hydrophilic heads (H) and n hydrophobic tails
(T) connected by m + n − 1 bonds. We use the notation unimer to represent each isolated
amphiphile while a monomer represents either a head or a tail particle. We consider NA of
such amphiphiles which occupy (m+n)NA lattice sites. The remainingNw = L3 − (m+n)NA
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sites are occupied by the solvent particles. The total energy of the system is given by

H = εT SnT S + εHSnHS + εHHnHH +
∑
i

εic (1)

where nT S , nHS , nHS are the total number of tail–solvent (subscript T S), head–solvent
(subscriptHS), and head–head (subscriptHH ) bonds of strengths εT S , εHS , εHH respectively
and

∑
i ε

i
c represents the conformation energy which may include bending energies as well.

All other interactions εHH , εHT , and εSS are set to zero. Defining γ = εHS/εT S (εT S will
assumed to be always positive indicating a repulsive interaction between a tail particle of the
amphiphile and the solvent), η = εHH/εT S , ε̄i = εi/εT S , the above equation can be written as

H = εT S

[
nT S + γ nHS + ηnHH +

∑
i

ε̄ic

]
. (2)

The parameter γ is a measure of hydrophobicity and is crucial in this model. The model
exhibits micelle formation and contains many interesting features. Care and co-workers have
studied some aspects of this model [12–15] earlier. More recently we have investigated micellar
energy and size fluctuations in this model in 2D [16]. Here we explore the properties of this
model near the CMC in 3D.

Results of the temperature dependence of the CMC for H1T2, H1T3, and H2T4 are reported
here. Simulation details can be found in reference [16]. Figure 2 shows the variation of unimer
concentration X1 (top) and specific heat Cv (bottom) as a function of the total amphiphilic
concentration (X) for H1T2 (left) and H1T3 (right) respectively. We have checked that H2T4

also exhibits similar features. The unimer concentration X1 increases almost linearly until it
reaches a maximum value (Xmax

1 ) occurring atXmax ; with further increase inX, eitherX1 stays
atXmax

1 , or it saturates to a different valueX∞
1 aroundX = X∞. In either caseX∞

1 � Xmax
1 and

X∞ � Xmax . BothX∞ andX∞
1 are dependent on the chain length and temperature. Typically

one expects theX1 versusX plot to look like the one for H1T2 at T = 0.9. HereXmax
1 ∼ X∞

1 .
However for most of the plots there is a regime (Xmax � X � X∞) where X1 decreases from
Xmax

1 to its asymptotic value X∞
1 as X increases from Xmax

1 to X∞. We have checked this
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Figure 2. Variation of unimer concentration X1 (top) and specific heat (bottom) as a function of
total amphiphilic concentration (X) for H1T2 (left) and H1T3 (right) respectively.
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feature by carrying out simulation while approaching this regime, Xmax � X � X∞, both
from X > X∞ and from X < X∞. We get the same result and conclude that this decrease of
X1 in this regime is not an artifact of the simulation.

The physical origin of this initial decrease ofX1 followed by a saturation becomes obvious
on looking at the evolution of the cluster distribution (i.e. micellar size distribution) function
Pn as a function of X in this interval. We find that for X < Xmax , Pn is a monotonically
decreasing function of the micelle size n. But for X � Xmax , Pn develops a minimum and a
peak. It becomes energetically more favourable for larger clusters to occur even at the expense
of lowering of X1 which causes a slight decrease of X1. Beyond X∞ the entropy of the
unimers prevails over the relative gain in energy for the formation of bigger clusters4 and the
unimer concentration stays roughly the same. One then expects the CMC to lie in the range
Xmax � X � X∞, which we characterize in the following way.

Figures 2(c) and 2(d) (bottom left and right) show the variation of the specific heat (Cv)
as a function of X for H1T2 and H1T3. Cv shows a peak in the region Xmax � X � X∞—to
be more precise, at X ∼ X∞. We have observed similar features for the longer amphiphiles
H2T4. From these figures, it is suggestive that the CMC can be identified as being the value of
X where the value of the specific heat is maximum. In order to establish this unambiguously,
we have also studied the variation of the specific heat with temperature5 for fixed X. Only the
results for H1T3 are shown in figure 3, although similar results are seen for other chain lengths
with different head-to-tail ratios. The peak for X = 0.001 occurs at T = 1.04. A comparison
with figure 2 (bottom right) shows that forX = 0.001 the peak should indeed occur somewhere
for T > 1.0. We show later (figure 6) that the data obtained from the temperature sweep at a
fixed X = 0.001 (Cv peaks at T = 1.04) fit well with other sets of data obtained from runs
shown in figure 2. Therefore, from these studies it is clear that the temperature variation of the
CMC can be obtained quite accurately from the positions of the specific heat peaks. Even from
a cursory look at the data shown in figure 2, one can see that for a given chain length the CMC
increases with increasing temperature. We will make this statement more quantitative shortly.

0.7 0.9 1.1 1.3
T

0.0

1.0

2.0

Cv

X=0.001
X=0.002

Figure 3. Variation of specific heat as a function of temperature (T ) for H1T3.

4 This means that the difference in chemical potential (µn+1 − µn) becomes small compared to the entropy of a
unimer at a given temperature.
5 The observed peak as a function of temperature can be explained in terms of a degenerate two-level system and has
been discussed in reference [16].
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We now discuss the results of a similar investigation for the ELM and demonstrate that
this model also contains the same qualitative features. The Hamiltonian for this model can be
written as

Heff = εHH

[
nHH + nHT + γeff nT T +

∑
i

ε̄ic

]
(3)

where, γeff = εT T /εHH , and ε̄ic = εic/εHH . For the sake of comparison of results obtained
from the ELM with those from the original model explicitly incorporating the solvent particles
(equation (2)), we set the conformation energy terms in both models to be zero (ε̄ic = ε̄ic = 0).
We also set εHH = 0 in equation (2), as is the case for neutral amphiphiles (but not in
equation (3) describing the ELM). Equations (2) and (3) simplify to

H = εT S[nT S + γ nHS] (4)

Heff = εHH [nHH + nHT + γeff nT T ]. (5)

Notice that in both of the models amphiphilicity is introduced in an ad hoc fashion through
negative values of γ or γeff , the origin of which lies in the hydrophobic effect. Therefore one
would expect the model introduced in this paper (without the explicit presence of solvents) to
also qualitatively reproduce the results obtained from the Care or the Larson model.

A rough estimate of energy can be made in order to compare the results obtained
from these two models as follows. We look at the energy gain of two amphiphiles as
they lie next to each other (forming a dimer) compared to the energy of the two isolated
unimers (see figure 4). From the Hamiltonian given by equation (4) (with εT S = 1) and
referring to figure 4, Eold = 2(5γ + 13) (figure 4(a)), Enew = 2(5γ + 10) (figure 4(b)).
Therefore (E = Enew − Eold = −6, and (E/(kBT ) = −6 for kBT = 1. In the
ELM, according to equation (5) (with εHH = 1), Eeffold = 2, Eeffnew = 2 + 3γeff ; hence

(a) (c)

(b) (d)

Figure 4. Interaction energies of two H1T3 amphiphiles; (i) for the model with the solvent according
to equation (4) (left); (ii) for the model without the solvent according to equation (5) (right).
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(Eeff = E
eff
new − E

eff

old = −3γeff and (Eeff /(kBT ) = −3γeff /(kBT ). Therefore, for
γeff = 1 and kBT = 0.5, (Eeff /(kBT ) = −6; the energy difference becomes the same in
both models. Hence, keeping all the interaction strengths at unity γ = γ̄ = 1, we compare
the simulation results for T = 1.0 and T = 0.5 for the Hamiltonians of equations (4) and (5)
respectively. It is worth pointing out that in obtaining the above energy estimates we have not
paid any attention to the entropy of the solvent particles. We will come back to this point in
our concluding remarks.

Figure 5 shows the variation of X1 and the specific heat as a function of the total
concentration X for three different temperatures which are chosen according to the above
discussion in order to compare these results with those shown in figure 2. Comparing the
results for the temperature 0.5 in figure 5 with those for T = 1.0 in figure 2, we find that the
variations ofX1 and Cv as a function of temperature are indeed qualitatively very similar. It is
reassuring that even the slight decrease in the value of X1 near the CMC is also present in this
model. Therefore this effective-lattice model without the solvents also has a CMC, which can
be ascertained from the position of the corresponding specific heat peak in the X–X1 plane.
Moreover a comparison of the curves for T = 1.0 in figure 2 with those for T = 0.5 in figure 5
reveals that the magnitudes of X1 and Xcmc (and hence the positions of the specific heat peak)
are very close in these two models.

0.0000 0.0010 0.0020
X

0.0

0.4

0.8

Cv

T=0.40
T=0.45
T=0.50

0.00000

0.00020

0.00040

0.00060

X1

(a)

(b)

Figure 5. Variation of unimer concentration X1 (top) and specific heat (bottom) as functions of
total amphiphilic concentration (X) for H1T3 for the model without the solvent.

From these detailed investigation of the dependence onX and T ofX1 andCv , we are now
in a position to plot the variation ofXcmc as a function of T for different amphiphiles obtained
in different lattice models. These MC simulation results are summarized in figure 6. The inset
shows the same for the effective model for H1T3. From figure 6 it is clear that both the lattice
models—one where the solvent particles are explicitly present and the other an effective-lattice
model without the explicit presence of the solvent particles—predict an increase in Xcmc with
increasing temperature. Moreover, from the absolute value of X (�Xcmc) at the CMC we find
that the CMC decreases very rapidly with increasing chain length.

The above prediction of the variation of CMC with the chain length seen in lattice
models is consistent with experimental results [31]. In contrast, the experimental results
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Figure 6. Variation of Xcmc as a function of temperature for H1T2 (circles), H1T3 (squares), and
H2T4 (diamonds) for the lattice model with solvents. The triangle on the curve for H1T3 is taken
from a temperature sweep (see the text). The inset shows the same for the effective model for H1T3
without the solvent particles.

on the variation of the CMC as a function of temperature for non-ionic surfactant are very
different [31]. For example, for non-ionic surfactant, e.g., C10E5, the CMC decreases with
increasing temperature, while for polar surfactants, e.g., dodecyl sulphate (C12SO−

4 Na+), after
an initial weak decrease the CMC rises as a function of temperature. This different temperature
variations of ionic and non-ionic surfactants have been ascribed to the different interfacial
structures of the hydrophobic core. A non-ionic micelle has a thick interfacial layer of head
groups rather than a sharp transition from the hydrophobic micellar interior to the aqueous
bulk seen for the ionic surfactants. Although the lattice models discussed here have been able
to predict the phase diagram quite successfully, they are inadequate to capture the temperature
dependence of the CMC. The inadequacy lies in the fact that in models of these types, the
solvent particles, even when present, do not have any structure. It is worth mentioning that
in the effective model without the solvent particles the interaction parameters are in principle
functions of all the thermodynamic parameters, e.g., temperature and concentration. Therefore
the temperature dependence of the CMC from the effective model does not necessarily reflect
a similar temperature dependence from the original model with the solvent particles present.
But since the solvents in the actual model are featureless, it is not surprising that the effective
model gives a similar qualitative temperature dependence of the CMC.

Finally, it is worth mentioning that the Ising-like model studied by Wenzel et al predicts a
lowering of the CMC with increasing temperature, and the model also predicts a closed-loop
coexistence curve [10]. For a two-component fluid mixture it has been demonstrated by Walker
and Vause [32] that a closed-loop coexistence curve will occur because of the competition
between the Ising and the orientational degrees of freedom. Evidently, new features need to be
added to the lattice models of amphiphiles to account for a closed-loop coexistence curve which
in turn will bring out the right temperature dependence of the CMC. Temperature-dependent
solute conformation effects have been suggested [31] but have not been incorporated in the
large-scale simulations of lattice models. It will be worthwhile to study the properties of the
generalized lattice models with additional internal degrees of freedom.
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